Inorg. Chem. **2004**, *43*, 3341−3343

H2 Activation in Aqueous Solution: Formation of *trans***-[Fe(DMeOPrPE)**₂H(H₂)]⁺ via the Heterolysis of H₂ in Water

John D. Gilbertson, Nathaniel K. Szymczak, and David R. Tyler*

*Department of Chemistry, Uni*V*ersity of Oregon, Eugene, Oregon 97403*

Received February 2, 2004

The water-soluble iron phosphine complex *trans*-Fe(DMeOPrPE)₂Cl₂ $(DMeOPrPE = 1,2-bis(bis(methoxypropyl)phosphino)ethane) reacts$ with H₂ in water to produce *trans*-[Fe(DMeOPrPE)₂H(H₂)]⁺ and H⁺. The product is a water-soluble $η^2$ -H₂ metal hydride complex, formed via the heterolysis of coordinated H_2 in water.

The inorganic chemistry of dihydrogen metal complexes has been comprehensively investigated¹⁻³ during the two decades since Kubas's seminal paper in 1984,⁴ although only one investigation has studied such complexes in aqueous solution. The Ru-aquo complex $[Ru(H_2O)_5(H_2)]^{2+}$ was reported⁵ to form in situ; however, high pressures of hydrogen were required to generate the complex. This result, as well as work by Kubas⁶ and Crabtree,⁷ was instrumental in revealing the ability of H_2 to bind in preference to other *σ*-donors and seemingly better ligands. If a stable metalligand framework could be found that was both water-soluble and capable of binding H_2 at relatively low pressures $(1-2)$ atm), there would be a number of important applications. For example, such materials could be used as hydrogen "scrubbers" in aqueous environments to prevent hydrogen embrittlement of metals and alloys^{8,9} and perhaps as catalysts in homogeneous hydrogenations and related chemical transformations.¹

In a recent paper, 10 we reported that complexes of the type *trans*-Fe(P_2)₂Cl₂ (P_2 = a water-soluble chelating bidentate phosphine ligand) reacted with N_2 , CO, and CH₃CN in

- (3) Heinekey, D. M.; Oldham, W. J., Jr. *Chem. Re*V. **¹⁹⁹³**, *⁹³*, 913.
- (4) Kubas, G. J.; Ryan, R. R.; Swanson, B. I.; Vergamini, P. J.; Wasserman, H. J. *J. Am. Chem. Soc*. **1984**, *106*, 451.
- (5) Aebischer, N.; Frey, U.; Merbach, A. E*. Chem. Commun*. **1998**, 2303.
- (6) Kubas, G. J.; Burns, C. J.; Khalsa, G. R. K.; Van Der Slus, L. S.; Kiss, G.; Hoff, C. D. *Organometallics* **1992**, *11*, 3390.
- (7) Crabtree, R. H.; Lavin, M.; Bonneviot, L. *J. Am. Chem. Soc.* **1986**, *108*, 4032.
- (8) Oriani, R. A. *Proc. Electrochem. Soc*. **2002**, *2002-13*, 385.
- (9) Carter, T. J.; Cornish, L. A. *Eng. Failure Anal*. **2001**, *8*, 113.
- (10) Miller, W. K.; Gilbertson, J. D.; Leiva-Paredes, C.; Bernatis, P. R.; Weakley, T. J. R.; Lyon, D. K.; Tyler, D. R. *Inorg. Chem*. **2002**, *41*, 5453.

10.1021/ic0498642 CCC: \$27.50 © 2004 American Chemical Society **Inorganic Chemistry,** Vol. 43, No. 11, 2004 **3341** Published on Web 05/06/2004

methanol to give *trans*-[Fe(P₂)₂(L)Cl]⁺ (L = N₂, CO, $CH₃CN$ (eq 1). In related work,¹¹ we found that analogous reactivity occurred in *aqueous* solution and that the binding of N_2 was reversible. This intriguing result inspired us to investigate the reactivity of $trans\text{-}\mathrm{Fe}(\text{P}_2)_2\text{Cl}_2$ with H_2 . In this paper we report the results of our study of the reaction of *trans*-Fe(DMeOPrPE)₂Cl₂ (I) with H_2 and the subsequent heterolysis of H_2 in aqueous solution.

Reaction of the green complex **I** with H_2 (1-2 atm) in water (pH 6.5) for 20 h resulted in the formation of the yellow *trans*-[Fe(DMeOPrPE)₂H(H₂)]⁺ complex (eq 2). When the reaction vessel was vented, the yellow product disappeared over the course of an hour and an orange color appeared.12 For that reason, the yellow product was characterized in situ under an H_2 atmosphere.

The room temperature ${}^{31}P{^1H}$ NMR spectrum of the solution exhibited one major resonance at 88.9 ppm and two broad, minor resonances¹³ of equal intensity at -23.5 and 19.5 ppm (Figure 1).¹⁴ Insight into the identity of the major resonance was gained by 1 H coupled 31 P NMR experiments, which revealed a doublet with a *J* coupling value of 45 Hz. This value suggests cis² J_{P-H} coupling, a spectroscopic motif consistent with a terminal hydride ligand bound to an iron

^{*} Author to whom correspondence should be addressed. E-mail: dtyler@uoregon.edu.

⁽¹⁾ Kubas, G. J. *Metal Dihydrogen and σ*-*Bond Complexes: Structure, Theory, and Reactivity*; Kluwer Academic/Plenum: New York, 2001. (2) Morris, R. H.; Jessop, P. G. *Coord. Chem. Re*v. **1992**, *121*, 155.

⁽¹¹⁾ Miller, W. K.; Lyon, D. K.; Tyler, D. R. Unpublished observations.

⁽¹²⁾ The orange color observed is attributed to $trans$ -[Fe(DMeOPrPE)₂- $(H_2O)_2$ ²⁺. See ref 10.

⁽¹³⁾ These resonances are actually exchanged broadened doublets with J_{P-P} $=$ 35 Hz. See Figure S1 in Supporting Information.

⁽¹⁴⁾ The very weak resonance at $\overline{70}$ ppm in Figure 1 is assigned to a $[Fe(DMeOPrPE)₂(H₂)Cl$ ⁺ species and will be discussed in a subsequent paper.

Figure 1. 31P{1H} NMR spectra (233 K): (a) reaction mixture of *trans*-Fe(DMeOPrPE)₂Cl₂ dissolved in ethanol/H₂O mixture (60/40 wt %), with H_2 (1-2 atm); (b,c) same sample (expanded) with ¹H decoupler off.

atom.15 Further clues to the structure of the yellow product were provided by the ¹H NMR spectrum of the yellow solution at 233 K,²¹ which showed resonances at -15.1 (quintet, ${}^{2}J_{\rm P-H}$ = 45 Hz) and -10.9 ppm (s, br). Essentially
identical ¹H and ³¹DJ¹H₃ NMR spectra were observed for identical ¹H and ³¹P{¹H} NMR spectra were observed for *trans*-[Fe(P₂)₂H(η ²-H₂)]⁺-type complexes (Table 1), and it is logical therefore to suggest that the yellow product is *trans*- $[Fe(DMeOPrPE)₂H(H₂)]⁺$ (eq 2).

Further evidence for an η^2 -H₂ ligand comes from an examination of T_1 (min) by the inversion recovery method.²² These measurements yielded a T_1 (min) of 19.5 ms at 500 MHz, which corresponds to an H-H bond distance of 0.85 Å, assuming fast rotation, and 1.07 Å for slow rotation of the H_2 ligand. These distances are clearly indicative of a nonclassical H₂ ligand. (H-H distances \leq 1.2 Å are considered nonclassical and H-H distances >1.5 Å are considered classical.¹) The H-H bond distance was further confirmed
by the $I(H \text{ D})$ method ²³ which gave a L coupling value of by the $J(H,D)$ method,²³ which gave a J coupling value of 29.8 Hz corresponding to an H-H distance of 0.92 Å.

As indicated in eq 2, protons are produced in the reaction of H₂ with *trans*-Fe(DMeOPrPE)₂Cl₂. Accordingly, the pH decreased from 6.5 to 4.4 during the course of the reaction. This result, along with the formation of the metal hydride complex, suggests that H_2 is heterolytically cleaved during the course of the reaction (eq 2).

In order to verify the reaction stoichiometry in eq 2, inverse-gated ${}^{31}P{^1H}$ NMR spectroscopy (25 °C) was used

- (16) Baker, M. V.; Field, L. D.; Young, D. J. *J. Chem. Soc., Chem. Commun.* **1988**, 546.
- (17) Bautista, M.; Earl, K. A.; Morris, R. H.; Sella, A. *J. Am. Chem. Soc.* **1987**, *109*, 3780.
- (18) Bautista, M. T.; Earl, K. A.; Morris, R. H. *Inorg. Chem*. **1988**, *27*, 1124.
- (19) Morris, R. H.; Sawyer, J. F.; Shiralian, M.; Zubkowski, J. *J. Am. Chem. Soc.* **1985**, *107*, 5581.
- (20) Ricci, J. S.; Koetzle, T. F.; Bautista, M. T.; Hofstede, T. M.; Morris, R. H.; Sawyer, J. F. *J. Am. Chem. Soc.* **1989**, *111*, 8823.
- (21) An ethanol/H2O mixture (60/40 wt %) was used as the reaction solvent to maintain fluidity at low temperatures. It should be noted that there was no change in the ${}^{31}P{^1H}$ NMR spectra of the products at both room and low temperatures when these solvents were substituted.

to quantify the amount of *trans*-[Fe(DMeOPrPE)₂H(H₂)]⁺ produced in the reaction. The experimental data revealed, onaverage,a65%conversion24 of**I**to*trans-*[Fe(DMeOPrPE)2H- $(H₂)$ ⁺, which should correspond to a pH of 2.6. Repeated reaction trials, however, yielded a pH \geq 4.4. As described next, the H^+ not accounted for in these experiments was found to be bonded to uncoordinated DMeOPrPE.

Control experiments²⁵ showed that the resonances at 19.5 and -23.5 ppm in Figure 1 are due to DMeOPrPEH⁺, the monoprotonated form of the uncoordinated ligand. The ¹ H coupled 31P NMR spectrum revealed a doublet with a *J* coupling constant of 448 Hz (indicative of ${}^{1}J_{P-H}$ coupling), consistent with protonation of one of the phosphorus atoms.²⁶ To account for these observations, it is proposed that some of the H^+ generated in the reaction of H_2 with **I** reacts with the complex to degrade it and form monoprotonated ligand. Further credence to this suggestion was given by evaluation of the aqueous pK_a values for each phosphorus on the DMeOPrPE. The values of 8.2 and 5.4, for $pK_{a(1)}$ and $pK_{a(2)}$, respectively, reveal the buffering capacity of the ligand.

Integration of the inverse-gated ${^{1}H}^{31}P$ NMR spectra of the product resonances shows an average [*trans*-[Fe- $(DMeOPrPE)_{2}H(H_{2})$ ⁺]: $[DMeOPrPEH^{+}]$ ratio of 1.2, corresponding to the production of essentially one proton for every Fe-hydride species in solution.²⁷ This ratio, coupled with the observation of a ≈67% conversion of **I** to *trans*-[Fe- $(DMeOPrPE)_2H(H_2)]^+$, suggests the stoichiometry in eq 3.²⁸

In an attempt to demonstrate that a clean conversion to the *trans*-[Fe(DMeOPrPE)₂H(H₂)]⁺ product in eq 2 is possible, the reaction was run in the presence of a proton trap (Proton Sponge).29 The *only* product observed in the ${}^{31}P{^1H}$ NMR spectrum³⁰ at both room temperature and 233 K was *trans*-[Fe(DMeOPrPE)₂H(H₂)]⁺ (88.9 ppm). Consistent with this result, the ${}^{1}H$ NMR spectrum³⁰ (233 K; ethanol*d*6/D2O (60/40 wt %)) only showed resonances for *trans*-

- (22) Hamilton, D. G.; Crabtree, R. H. *J. Am. Chem. Soc.* **1988**, *110*, 4126.
- (23) Maltby, P. A.; Schlaf, M.; Steinbeck, M.; Lough, A. J.; Morris, R. H.; Klooster, W. T.; Koetzle, T. F.; Srivastava, R. C. *J. Am. Chem. Soc.* **1996**, *118*, 5396.
- (24) In a typical experiment, 0.023 mmol of *trans*-Fe(DMeOPrPE)₂Cl₂ reacted with H₂ in water to afford 0.014 mmol of *trans*-[Fe- $(DMeOPrPE)₂H(H₂)$ ⁺, a value that corresponds to approximately 65% conversion.
- (25) See Figures S1 and S2 and experimental procedures in the Supporting Information.
- (26) The resonance at 19.5 ppm is assigned to the protonated phosphorus atom (P1) of the $DMeOPrPEH⁺$ due to the fact that the protonated P resonance should shift downfield when the shielding effect of the lone pair is removed by the formation of the quaternary phosphonium salt.
- (27) Over 95% of the phosphorus in solution is accounted for, well within experimental error.
- (28) The FeCl₂ most likely exists as the hexaaquo species, $[Fe(H₂O)₆]^{2+}$.
- (29) Conventional bases such as hydroxide or triethylamine were not suitable because they reacted with the *trans*-Fe(DMeOPrPE)₂Cl₂ complex and degraded it. To avoid the problems associated with nucleophilic bases, the nonnucleophilic base 1,8-bis(dimethylamino) naphthalene (Proton Sponge) was used.
- (30) See Figures S3-S5 in the Supporting Information.

⁽¹⁵⁾ See references in Table 1.

Table 1. NMR Data for Selected $[Fe(P_2)_2H(\eta^2-H_2)]^+$ -Type Complexes^{*a*}

complex	¹ H NMR	$31P{1H}$	J_{H-D} , Hz	T_1 (min), ms ^b	ref
<i>trans</i> -[Fe(DMPE) ₂ H(H ₂)] ⁺	-17.1 (q, $^2J_{P-H}$ = 50.3 Hz), -11.8 (s, br)	68.9 ^d	31		16
<i>trans</i> -[Fe(DEPE) ₂ H(H ₂)] ⁺	-14.5 (g, $^2J_{P-H}$ = 47.3 Hz), -10.5 (s, br)	95.2 ^d	28	12 (200)	16, 17
<i>trans</i> - [Fe(DEDPPE) ₂ H(H ₂)] ⁺	-13.6 (g, $^2J_{P-H}$ = 47.3 Hz), -9.2 (s, br)		32	7(200)	18
<i>trans-</i> $[Fe(DPrPE)2H(H2)]+$	-14.6 (q, $^2J_{P-H}$ = 48.5 Hz), -10.7 (s, br)	89.9^{d}			16
<i>trans-</i> $[Fe(DPPE)2H(H2)]+$	-12.9 (q, $^2J_{P-H}$ = 47 Hz), -8.0 (s, br)	92.5^e	32	8.5(200)	19.20
<i>trans-</i> [Fe(DMeOPrPE) ₂ H(H ₂)] ⁺	-15.1 (q, $^2J_{P-H}$ = 45 Hz), -10.9 (s, br)	88.9e	30	19.5(500)	\mathcal{C}

a DMPE = 1,2-bis(dimethylphosphino)ethane, DEPE = 1,2-bis(diethylphosphino)ethane, DEDPPE = 1-(diethylphosphino)-2-(diphenylphosphino)ethane, DPrPE) 1,2-bis(dipropylphosphino)ethane, DPPE) 1,2-bis(diphenylphosphino)ethane. *^b* Spectrometer frequency (in MHz) listed in parentheses. *^c* This work. ^{*d*} Anhydrous ethanol. ^{*e*} Ethanol- d_6 .

 $[Fe(DMeOPrPE)₂H(H₂)]⁺$ (Table 1) and for protonated Proton Sponge at 19.1 ppm (s).

The mechanism for the formation of *trans*-[Fe(DMeOPrPE)₂H- $(H₂)$ ⁺ is currently under investigation. It is suggested to proceed via formation of an $[Fe(DMeOPrPE)₂(H₂)Cl$ ⁺ intermediate followed by heterolysis of the H-H bond to yield a neutral $[Fe(DMeOPrPE)₂(H)Cl]$ species that may undergo subsequent ligand substitution by $H₂$. In support of this pathway, it is noted that Morris has proposed a similar mechanism^{31,32} for the heterolysis of H_2 in nonaqueous systems (although the addition of a chloride sequestering agent and external base were required). Heinekey³³ has shown that H_2 can displace the normally strongly bound $Cl^$ unaided, and Eisenberg has proposed heterolytic activation of H_2 in systems containing a cationic metal center with labile ligands.³⁴

In summary, this work showed that heterolysis of H_2 is possible in aqueous solutions by reacting *trans*-Fe-

- (32) Bautista, M. T.; Cappellani, E. P.; Drouin, S. D.; Morris, R. H.; Schweitzer, C. T.; Sella, A.; Zubkowski, J*. J. Am. Chem. Soc*. **1991**, *113*, 4876.
- (33) Heinekey, D. M.; Voges, M. H.; Barnhart, D. M. *J. Am. Chem. Soc.* **1996**, *118*, 10792.
- (34) Albietz, P. J.; Houlis, J. F.; Eisenberg, R. *Inorg. Chem.* **2002**, *41*, 2001.

 $(DMeOPrPE)₂Cl₂$ with $H₂$ in water to produce *trans*-[Fe- $(DMeOPrPE)_2H(H_2)$ ⁺ and H⁺.³⁵ To our knowledge, H₂ heterolysis in aqueous solution by a transition metal phosphine complex is unprecedented. The protons produced in the heterolysis are noninnocent in the sense that they lead to decomposition of the starting material. As shown, addition of a proton trap inhibits the decomposition of the starting material caused by the protons produced during heterolysis.

Acknowledgment is made to the National Science Foundation for the support of this work and to Dr. M. Strain for thoughtful NMR discussions. J.D.G. acknowledges support from an NSF IGERT fellowship. Dr. David Lyon and Warren Miller (Bend Research Inc.) are acknowledged for helpful discussions.

Supporting Information Available: Text describing experimental data, control experiments involving DMeOPrPE with H+, and selected NMR data. This material is available free of charge via the Internet at http://pubs.acs.org.

- (35) Early work by Halpern³⁶ and James³⁷ on homogeneous catalytic hydrogenations by ruthenium complexes involved heterolysis of H_2 in aqueous solution. However, no η^2 -H₂ complexes were observed.
- (36) Halpern, J. *J. Phys. Chem.* **1959**, *63*, 398.
- (37) Halpern, J.; Harrod, J. F.; James, B. R. *J. Am. Chem. Soc.* **1966**, *88*, 5150.

IC0498642 (31) Cappellani, E. P.; Maltby, P. A.; Morris, R. H.; Schweitzer, C. T.; Steele, M. R*. Inorg. Chem.* **1989**, *28*, 4437.